Addition of fractional numbers can be defined as
+/fractional 0a 0b = +/fractional/carry a b 0_ 1_ +/fractional a b.
+/fractional 1a 0b = +/fractional/carry a b 1_ 0_ +/fractional a b.
+/fractional 0a 1b = +/fractional/carry a b 1_ 0_ +/fractional a b.
+/fractional 1a 1b = +/fractional/carry a b 0_ 1_ +/fractional a b.
where evaluating the carry of fractional addition is
+/fractional/carry 0a 0b carry-zero carry-one = carry-zero.
+/fractional/carry 1a 0b carry-zero carry-one = +/fractional/carry a b carry-zero carry-one.
+/fractional/carry 0a 1b carry-zero carry-one = +/fractional/carry a b carry-zero carry-one.
+/fractional/carry 1a 1b carry-zero carry-one = carry-one.
And the subtraction of fractional numbers is
-/fractional 0a 0b = -/fractional/borrow a b 0_ 1_ -/fractional a b.
-/fractional 1a 0b = -/fractional/borrow a b 1_ 0_ -/fractional a b.
-/fractional 0a 1b = -/fractional/borrow a b 1_ 0_ -/fractional a b.
-/fractional 1a 1b = -/fractional/borrow a b 0_ 1_ -/fractional a b.
where evaluating the borrow of fractional subtraction is
-/fractional/borrow 0a 0b borrow-zero borrow-one = -/fractional/borrow a b borrow-zero borrow-one.
-/fractional/borrow 1a 0b borrow-zero borrow-one = borrow-zero.
-/fractional/borrow 0a 1b borrow-zero borrow-one = borrow-one.
-/fractional/borrow 1a 1b borrow-zero borrow-one = -/fractional/borrow a b borrow-zero borrow-one.
Unlike the addition and subtraction of integers, these operations, in general, require infinite time and memory to calculate a finite number of bits, due to the carry and borrow.
No comments:
Post a Comment